
AD-R155 438 EXPERIENCE W4ITH OMEGA IMPLEMENTATION OF A PROTOTYPE i/i
PROGRAMMING ENVIRONMENT PART I(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CA B J MACLENNAN MAY 85

UNCLRSSIFIED NPS52-85-S06-PT-1 FiG 9/2 NL

IllIImmlllllI
mIImhllmmll

IIIIIIIIIIEEE
IIIIIIII

.

p,.. -

iiiii ,3 2

1.01.8
iiiI2 W25

NATIONAL BUREAU OF STANARDS-1963-A

Il-

....
*o *%" - ="'=°*- . , . - "-U , ° * . * . - . . --.. - o . *° • . .. •* . °- . . - '.2

. - . -.

00

qj NPS52-85-006

NAVAL POSTGRADUATE SCHOOL
Monterey, California

EXPERIENCE WITI1 :

IMPLEMENTATION OF A
PROTOTYPE PROGRAMMING ENVIRONMENT

PART I

Bruce J. M.acLennan

May 19850

" Approved for public release, distribution unlimited

Prepared for:

- :Chief of Naval Research
Arlington, VA 22217

. -. '- .-. - .-. - - . .-** . , - " • , + * . •.. - -- - - - .,

NAVAL POSTGRADUA"TE SCHOOL
tlonterey, California

Rear Admiral K.H. ShUMaker 0. A. Schrady
Superintendent Provost

The work reported herein was supported by Contract N00014-85-WR-24057

from the Office of Naval Research.

* Reproduction of all or part of this report is authorized.

This report was prepared by:

B RUCE J. NIACLE 'N
/Associate Professor and Acting Chairman of

Computer Science

*Reviewed by: Released by:

J. A C ENtA KNEALE T. MARSHALL

Acting Chairman Dean of Information and

Department of Computer Science Policy Science

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NPS52-85-006
4 TIT E (nd Subtte) S. TYPE OF REPORT & PERIOD COVERED

EXPERIENCE WITH a: IMPLEMENTATION OF A PROTOTYPE
PIROGRADDIING ENVIRONMENT - PART I

6. PERFORMING ORG: REPORT NUMBER

7. AuTHOR(s.; I. CONTRACT OR GRANT NUMBER(#)

Bruce J. MacLennan

9. PERFORMING ORGANIZATION NAME AND ADDRESS W0. PROGRAM ELEMENT. PROJECT, TASK

Naval Postgraduate School AREA & WORK UNIT NUMBERS

Monterey, California 93943 61153N; PR014=08-01
N00014859TqR4057

I1 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research May 1985
Arlington, Virginia 22217 3. NUMBEROFPAGES

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of this report)

unclassified
S. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

DSTRaIBUTONSTATEENLA
Approved kz public rde94

Diut riutica Unlimited

17. DISTRIBUTION STATEMENT (of the oehtract entered In Block 20, If different from Report)

Approved for public release, distribution Unlimited

10 SUPPLEMENTARY NOTES

I' KEY WORDS (Continue on reverse side If neceeary ard Identify by block number)

Object-oriented programming, production rules, production systems, entity-

relationship, pseudo-natural language, knowledge representation, natural

language interface, logic programming, simulation language, rule-based system,

knowledge base, programming environment, software prototyping, rapid
prototyping, syntax-directed editor, unparser

20 ABSTRACT (Contlnue on reverse dde It necessary and Identify by block number)

This is the first report of a series exploring the use of the P programming

notation to prototype a programming environment. This environment includes
an interpreter, unparser, syntax directed editor, command interpreter, debugger

and code generator, and supports programming in a small applicative language.
The present report describes the interpreter, unparser, syntax directed editor,

command interpreter and debugger for a subset of the language, namely arithmetic
expressions. •,,.

DD , J,, 1473 'EDIrION OF I NOV GS IS OBSOLETE UNCLASSIFIED
S N 01 2- LF. 01.- 6601

SECURITY CLASSIFICATION OF THIS PAGE (ftent Date Entered)

........ ... • .-.-.- '.. -.... -':. .-- *

EXPERIENCE WITH 02

IMPLEMENTATION OF A

PROTOTYPE PROGRAMMING ENVIRONMENT

PART I

Bruce J. MacLennan
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943

*Abstract-

This is the first report of a series exploring the use of the fl programming notation to prototype a pro-
gramming environment. This environment includes an interpreter, unparser, syntax directed editor,
command interpreter, debugger and code generator, and supports programming in a small applicative
language. The present report describes the interpreter, unparser, syntax directed editor, command
interpreter and debugger for a subset of the languatge, namely arithmetic expressions.

1. Introduction

Our goal is to explore in the context of a very simple language the use of the fl programming notation

-:MacLennan83, MacLennan85 to implement some of the tools that constitute a programming environ-

ment. Succeeding reports will extend the tools described in this report*.

The structure of this report is as follows: First we briefly review the f] programming notation for

describing transformations on relations. Second, we define a simple language - the language of arith-

metic expressions. An abstract syntax for this language is defined in terms of relations. Third, we dis-

cuss abstract interpretation of programs in this language. Fourth, we modify the interpreter to accom-

plish unparsing. Next, we look at error recovery and interactive debugging. Finally, we consider syntax -]

directed editing of abstract programs.

Support for this research was provided by the Office of Naval Research under contract N00014-85-WR-24057.

... o ..- .-- ,,

2. OVERVIEW OF f

2.1 Requirements for a Programming Enviranment Database

To understand the relevance of fl to programming environments we begin by stating the requirements

for a software development database. It will be required to store and interrelate many kinds of infor-

mation:

-Programs

- Specifications

- Documentation

- Version Information

- Comments

- Object Code

- Implementation Hints

- Test Data

- Test Results

- Reports

- Runtime Structures

In prototyping tools and environments, we want to make a minimum of implementation commitments.

- Hence, it is convenient to take a relational view. This is because relations are a well-understood,

implementation-independent way of viewing databases.

2.2 RELATIONS

n. We will view the computer system (or network) as containing a (possibly large) number of (finite) rela-

* tions. The number of relations is not fixed; new (empty) relations can be created by direct (user) or

.- '. indirect (program) request. The tuples in relations can contain:

-2-

Values: For example. numbers, Booleans, characters. strings. "pure" lists.

0 Objects: Essentially unique IDs: their only properties are the relations in which they participate.

Relations are themselves objects.

2.3 Notation

We use the notation 'R(z,y, ,z)' to mean the tuple (z,y ,z) is in R. Similarly,

'-R(z,y, . ,z)' means that there is no such tuple in R.

Operations on the database are described by a kind of production rule:

cause effect

The effect part is composed of a series of transactions. There are two forms for a transaction:

0 RZy, ,z) means add the tuple (z, y, • • . ,z) to R.

* - R(z, y, . . . ,z) means delete the tuple from R.

* The arguments z, y, • ., z can be any applicative expressions. They can also be procedures, i.e.,

paraneterized database transformations.

The cause part has the form:

condition ,

The cause is a sequence of conditions separated by commas. Each condition asks whether certain rela-

tions hold certain tuples.

The condition 'R(z,y, .. ,z)' succeeds if there is a tuple (z,y, ... ,z) in R. On the other hand,

'-R(x,y, z)' fails if there is such a tuple in R. The arguments z, y,..., z have the forms:

I a constant matches itself;

a free variable matches anything, and becomes bound to value it matches.

. an applicative expression matches its value.

We consider several examples of conditions. R(2,3) succeeds if the pair (2,3) is in R. -R(2,3)

succeeds if the pair (2,3) isn't in R. If 'y' is free (unbound), then R(2,y) succeeds if there is a pair of

I.3

the form (2.v) in R; variable 'y' becomes bound to v. -R(2.y) succeeds if there is no pair of the

form (2,v) in R. If 'y' is bound to v. then S(y,3) succeeds if the pair (v,3) is in S. -S(y, 3)

succeeds if the pair (v,3) is not in S.

An implicit join is a rule in which the same free .7ariable appears in several conditions. For exam-

ple,

R(2,y), S(y, 3)

succeeds if:

1. There is a pair of the form (2,v) in R

2. The pair (v,3) is in S

It fails, otherwise. Note: There may be many pairs of the form (2,v) in R. The join succeeds if for

one or more of them (v,3) is in S. Any conjunction of conditions is allowed in the cause.

2.4 Stack Example

To illustrate these ideas we show the fl definition of a stack manager. First we introduce the relations

and their intuitive meanings:

_ Stack(s) - object a is a stack

* Contents(z,s) - the list z is the contents of a

• Push(a,z,s) - a pushes z on s

* Pop(a a) - a pops a

" Receives(a,z) - a receives z

The domains of these relations are described by the following assertions (second order relations). Thus

'Degree (Contents, 2)' means that all the tuples in Contents have two elements; 'Domain (list, 1, Con-

tents)' means that the first elements of the tuples in Contents satisfy the 'list' predicate; and '!ndexed

(Contents, 2)' means that the second elements of the tuples in Contents are all unique. Each assertion

is shown in two notations: the usual predicate notation and a pseudonatura notation (fl supports

several semantically equivalent notations; see MacLennan84. Ufford85 i).

-4-

S- . . .[-:€ .. ,. _ o.2.- - . . -. : ..-. , . . -.

0 Degree (Stack, 1)

'Stack' has degree 1.

0 Degree (Contents, 2),

'Contents' has degree 2.

* Domain (list, 1, Contents)

'list' is domain 1 of 'Contents'.

0 Domain (Stack, 2, Contents)

'Stack' is domain 2 of 'Contents'.

* Indexed (Contents, 2)

'Contents' is indexed by domain 2.

0 Degree (Push, 3)

'Push' has degree 3.

0 Domain (Stack, 3, Push)

'Stack' is domain 3 of 'Push'.

* Degree (Pop, 2)

'Pop' has degree 2.

0 Domain (Stack, 2, Pop)

'Stack' is domain 2 of 'Pop'.

0 Degree (Receives, 2)

'Receives' has degree 2.

. The pop rule describes how to pop a stack:

Stack (a), Pop (a,s), Contents (x,8)

-Pop (a,,),

-Contents (zs),

Receive (a, first z!),

.5-

. -. . - . . .*.- -" ". "

-,ti a ' Sb '' - ' . - . . ' ._ -. * r- . ": - -'* .---- • " -. -.- - -. .

Contents (rest Iz' s)

It can be read as follows: "If a is a stack, a is popping a. and z is the contents of S. then a is not pop-

ping a z is not the conLents of a, a receives the first element of z. and the rest of z is the contents of

The push rule is analogous:

Stack (a), Push (azs), Contents (ys)

-Push (a,X,s),

-Contents (y,a),

Receive (a,s),

Contents (cons I ,y], a)

If a is a stack, a is pushing z on a, and y is the contents of a, then a is not pushing z oni a, y is not

the contents of a, a receives s, and the result of consing z on y is the contents of a.

2.5 Further Notationa Conventions

Notice that in the push and pop rules, conditions found to hold in the cause parts of rules are often

canceled in the effect parts. Since this is a very common situation we introduce the following cancella-

tion convention: When a tuple found in the condition is removed by the effect. i.e., a relation that holds

in the condition is canceled by the effect, we can indicate this by an '*' before the condition. For

example, the pop and push rules can be written:

" Stack(s), *Pop(a,s), *Contents(z,a)

Receive(a, firstl z), Contents(rest z], o)

Stack(a), *Push(a~za), *Contents(y,s)

Receive(a,s), Contents(cons'z,yl. a)

* It is often useful to limit the application of rules by constraints, which are implemented as follows The

relation called 'if' contains the single value true Hence. an applicative expression that evaluates to a

Boolean value can be used to constrain rule application. For example:

!-6

Sched (z t). Clock (t. if (t~ t)

For convenience we often omit the if and write:

Sched (xt). Clock (t, I~ t

We can summarize all that we've seen in the following (simplified) grammar for the 11 langu age:

Simplified n2 Grammar

rule =cause -~effect

cause =cond

corzd r * el args

args (expr,

effe ct =trans

trans = , el args

A complete fl grammar can be found in [MacLennan85>.

2.6 Pseu&,natural Notation

We have experimented with several pseudonatural notations for fl rules. The notation used in this

* .report is a variation of that described in 'MacLennan84! and 'Ufford85 Relations can be named b%

* templates, for example:

-is stack

-is contents of-

-pops -

-pushes -on-

-receives -

Rules are written:

If - then-

with ,'or and' for '..The word 'given' represents the cancellation convention Hence the pop

-7-

rule can be writt- n:

If S is stack, given A pops S. and given X is contents of S

then A4 receives first of X. and rest of X is contents of S.

The push rule is:

If S is stack, given .4 pushes X on S, and given Y' is contents of S

then A receives S and catenation of X and Y is contents of S.

Allowing 'a' 'an' and 'the' as noise words and using words for variable names we have:

If an object is a stack, given an agent pops the object, and given a list is the contents of the object

then the agent receives the first of the list, and the rest of the list is the contents of the object.

If an object is a stack, given an agent pushes a thing on the stack, and given a list is the contents of

the stack then the agent receives the stack, and the catenation of the thing and the list is the con-

tents of the stack.

3. Alttract Structure

For our example programming environment we will use a very simple language of arithmetic expres-

sions composed of -. . parentheses and literal integers. A typical program is:

(3"-5) x 6

First we must define an abstract structure for representing programs. There are two kinds of nodes:

* Constant Nodes: correspond to literals.

* Application Nodes: correspond to the application of an operator to its operands

These nodes and their interconnections can be represented by the relations:

* Con (E)

E is a constant

Litval (V7 E)

V is the literal value of E.

Appl (E)

E is an application.

Op (F. E)

F is the operator of E.

*-Left (X, E)

X is the left argument of E.

* Right (1Y7 E)

Y is the right argument of E.

For example, the program

(3-5) 6

would be represented by the database:

. S -9-- . . *.

App] (nl)

Op (" x", n1)

Left (n2, nI)

Right (n3. ni)

Appl (n2)

Op ("-", n2)

Left (n4. n2)

Right (n5, n2)

Con (n3)

Litval (6, n3)

0 Con (n4)

Litval (3, n4)

Con (n5)

Litval (5, n5)

Meaning (sum, "- ")

Meaning (product, "x")

We have given the objects names ('nl', 'n2', etc.) only so they can be referred to in our example; nor-

mally they would be anonymous since the tree would have been constructed by an editor. This data-

base is portrayed in Figure 1.

In defining the domains of the various relations, it will be convenient to make use of the following

function abbreviation. Let 'Function(FD,R)' mean

* Degree(F,2),

* Domain(R,1,F),

* Domain(D,2,F),

Indexed(F,2).

In the pseudonatural notation we can say:

1-10-

"2' *. .. .- - . .. -, -' . .° . ..•..,.,..,,-,,. ,A , .., 'k .t .- .. . 0 -

IIXIILef tRih

n2f n3

+ eft Right Litval

Litval Litval

3 5

Figure 1. Database Representing Abstract Program

'F is a function from D to R' means

'F has degree 1, R is domain 1 of F, D is domain 2 of F, and F is indexed on domain 2'.

Hence, if we know that Function(F,D,R), that is, that F is a function from D to R, then we know

that given any z in D there will be at most one y such that F(y,z).

The domains of the abstract program structure relations (in the pseudonatural notation) are as fol-

lows:

* 'constant' has degree 1.

0 'literal value' is a function from 'constant' to 'integer'.

0'application' has degree 1.

e 'operator' is a function from 'application' to 'string'.

* 'left argument' is a function from 'application' to 'expression'.

• 'right argument' is a function from 'application' to 'expression'.

In the predicate notation this is:

Degree (Con, 1)

Function (litval, Con, integer)

Degree (Appl, 1)

Function (Op, Appl, string)

-' - I

7 - 77T' M- .7s4

Function (Left, expr. expr)

Function (Right, expr. expr)

Here we have assumed that

expr =Con Appi

-12-

4. Evaluation

4.1 Relations

The preceding relations define the abstract program structure: the% are static (with respect to program

evaluation). We need additional relations to control program evaluation: they are dynamic (with respect

to program evaluation). The evaluation relations are.

Eval (E)

E is evaluated

* Value (V. E)

V is the value of E

Meaning (F, N)

F is the meaning of N.

The domains of these relations are:

• Degree(Eval,l), Domain(expr.l.Eval).

'evaluated' has degree 1. and 'expression' is domain 1 of 'evaluated'.

" Function (Value. expr. integer)

'value' is a function from 'expression' to 'integer'.

Function (Meaning, string, function)

meaning' is a function from -string' to 'expression.

* Eva] and Value can be thought of as attrAuteo that at various times are attached to various nodes in the

tree In particular, the Eval attribute on a node means that the evaluation of that node has been

requested. but not serviced The Value attribute associates a value with a node until such time as that

* value is used. The Meaning relation is a table that maps the names of operators into functions for per-

forming the operations.

- 3-

;: i " +

- i ,-f b .. L . t~ .. % , N - . -. -. . -. -. -_ . , . - , . . .

|-k --

4.2 Evaluation of Constant Node

The transformation required to evaluate a constant node can be portrayed:

Con E Eval Con E Value

Lirval......

Vy

That is, if the Eval attribute arrives at a constant node, then we remove the Eva] attribute (since the

request has been serviced), and use a Value link to bind the node's literal value to the node. In other

words, when an Eval arrives at a leaf of the tree it is converted into a Value, which will travel back up

the tree.

The rule for accomplishing this is simply':

If given an expression is evaluated, the expression is a constant, a number is the literal value of the

expression, and a function is the meaning of "lit"

then the function of the number is the value of the expression.

This is expressed in the predicate notation as:

". Eval{E). Con(E), Litval(V,E), Meaning(F,"lit") =t Value(F{ V , E)

The function that is the meaning of "lit" is the identity function, hence the following simpler rule

would also work:

*Eval(E). Con(E), Litval(VE) Value(V,E)

. We have used the more complicated rule to display the symmetry between the evaluator and the

*O unparser (which is discussed in the following section).

I. The pseudonatural transcription of the rules was prepared by Robert Ufford see UffordbS

-14-

4.3 Evaluation of Application Node

Evaluation of application nodes is accomplished in two steps. First there is a downward analysis pass

when the Eva] attribute reaches the node and is passed to its daughters. Later there is an upward syn-

" thesis pass when the Values from the daighters arrive back at the node and are used to compute the

Value for the node. These steps can be visualized as in Figures 2 and 3.

A A I
01:

N N

Figure 2. Step 1: Evaluate Arguments

A AM v:-l, .ELov]

L.*4t 5)IJ

Figure 3. Step 2: Perform Operation X Y

*.It is easy to translate these diagrams into rules. First the analysis (downward) rule:

. -If given an expression is evaluated, the expression is an application, node I is the left argument of

the expression, and node 2 is the right argument of the expression

then node _ is evaluated, and node_2 is evaluated.

* - In the predicate notation:

"Eval(E). Appl(E). Left(X,E), Right(Y,E)

SEval(X), Eval(Y).

Notice that the Eval flag is passed to both daughters simultaneously; thus they can be evaluated con-

, currently or in any other order. Hence, Eval is a parallel evaluator.

Next we consider the synthesis (upward) rule:

-15-

. . °7.

If an expression is an application, a string is the operator of the expression, node I is the left argu-

ment of the expression. node. 2 is the right argument of the expression, a function is the meaning

of the string, given number_ is the value of node_ and given number _2 is the value of node 2

-. "then the function of number 1 and number 2 is the value of the expression.

In the predicate notation:

Appl(E), Op(N,E), Left(XE). Right(Y,E),

Meaning(F,N), *Value(UX), *Value(V, Y)

SValue (F IU, V' , E)

This completes the parallel evaluator for simple abstract arithmetic expressions.

O

-16

--°V

S. Unparsing

5.1 Relations

We will no% use exactly the same approach as used for evaluation, but for a different purpose -

unparsing Instead of computing an integer value for the abstract program. we will compute a string

value, which is the program's concrete representation. That is we will unparse the abstract program.

This is accomplished by changing the interpretation of the literal constants and the primitive operators.

This is a quite general approach. From a single program such as the evaluator we can generate a

family of related programs. just by changing the domain of interpretation of the constants and operators.

Examples of tools amenable to this approach are unparsers. type checkers, symbolic evaluators.

0 The following relations are needed:

Unperse (E)

E is unparsed

(corresponds to Eval)

.. . Image (S. E)

S is the image of E

(corresponds to Value)

Template (T, N)

T is the template for N

(corresponds to Meaning)

Given our previous example. Unparse(nl) will eventually result in

Image ("((3-5) ,6)", nl)

For simplicity we have generated an image that is fully parenthesized

*The domains of the relations are as follows

• Degree (Unparse I1)

'unparsed' has degree I

-17-

-- Function (Image. expr. string).

'image* is a function from -expression' to 'string'

*-Function (Template. string, function).

'template' is a function from 'string' to function'

\We also will make the following assumptions:

Assume the function 'string- int n converts the integer n into a string.

* Assume Template (string- int. "lit").

- Assume a ^t represents string catenation.

* For operator symbols N, assume Template (F, N). where

F U,V = 1("U -N -V

and N is ... or or "%" or -" Thus. if Template (F, " then

F "3'' "(6 2)" = "(3 (6 x 21"

5.2 Unparsing Constants

When the Unparse attribute arrives at a constant node, the literal value is converted to a string and

made the image of the node. In the pseudonatural notation the rule is:

If given an expression is unparsed, the expression is a constant, a number is the literal value of the

expression. and a function is the template of "lit"

then the function of the number is the image of the expression.

[.. In predicate notation it is

0'-. *Unparse(E). Con(E), Litval(V.E), Template(F.E)

I" Image(F V E)

5.3 Unparsing Applications

The arrival of the unparse attribute at ati application node triggers its propagation to the daughter

nodes Hence the analysis rule in pseudonatural notation is

[o.I M- . .,

* , , --4-... .. , ...

If given an expression is unparsed, the expression is an application. node-1 is the left argument of

the expression, and node 2 is the right argument of the expression

then node I is unparsed, and node_2 is unparsed.

In predicate notation it is:

*Unparse(E) , Appl(E), Left(X,E), Right(Y,E).

- Unparse(X), Unparse(Y)

When images arrive at the daughters of the application, they are combined by the template function of

the operator into an image for the entire node. Hence the synthesis rule in pseudonatural notation is:

If an expression is an application, a string is the operator of the expression, node 1 is the

left argument of the expression, node 2 is the right argument of the expression, a function is the

template of the string, given image I is the image of node_1, and given image 2 is the image of

node_2

then the function of image 1 and image 2 is the image of the expression.

-" In the predicate notation:

Appl(E), Op(NE), Left(X,E), Right(Y,E),

Template(F,N), *Image{ U,X), *Image(V,Y)

! Image (F U, Vj, E)

This completes the rules for the unparser.

% -19-

- - • y••- • , .*•-....". .,. ..,.-.,.-. *-. .,t ,t :. 4._:- ,,kd , m ;,
'

6. Information Hiding

The relations can be divided into three domains of accessibility on the basis of "need to knoA'

. 4Abstract

Programs

Con, Litval,

" '" ' "A p p l , O p ,

~Left, Right

," " 'Evaluator Unparser

0
Eval, Unparse,

"' "'.Value, Image,

• .L Meaning Template

- That is, both the evaluator and the unparser need access to the abstract structure relations (read-only

.access, actually). On the other hand, the evaluator needs access to its own dynamic relations, but not

to those of the unparser. Conversely, the unparser needs access to its own relations, but not the

- evaluator's. These access restrictions can be enforced bv the capability mechanism described in

.MacLennan851

-20-
-. , -. '. - ." -: "- • " ..' . . .'. . : .: . -' ' ' - - ' , ' -" '' - ' : :' -. : . '-- -' ,' ' : ' --3 . ---.- - ' " -- ,

A1

7. Error Handling

7.1 Error Detection

A real programming environment must be able to detect errors and allow the user to deal with them.

Let's ronsider what happens when an error occurs. Suppose we evaluate ((3-0)-1). This leads to the

assertion

Value (quotient '3.0. n)

Suppose quotient 3.0 error. This will trigger that assertion

Value (sum 'error,1>, m)

If we further assume sumlerror,1! --> error, then the value returned for the entire evaluation is

error'. This result is not helpful - it doesn't tell us where the error occurred, only that an error

occurred.

One possible solution is to suppose the primitive operations return "error codes" when something

goes wrong, that the code indicates what went wrong, and that error codes are distinguishable from

integers and other "legitimate" values. Then we can incorporate error checking into our interpreter.

We do this by tentatively attaching the alleged value to the node (via a new relation called Check) until

it is determined whether or not the value is legitimate. This requires the following additional relations:

* Check (V, E)

V is the value to be checked for E

• Explanation (S, C)

S is the explanation of error C

* Display (S)

S is displayed

° CurrentNode (E)

E is the current node

The domains of these relations are:

I
? -21-

Function (Check. expr. integer).

Function (Explanation. errorcode. string).

Degree (Display. 1).

Domain (string. 1. Display)

We then need to modify the second (upward or synthesis) rule for applications. It is replaced by these

three rules:

Appl(E). Op(N.E), Left(X.E), Right (YE),

Meaning(F,N). *Value(U.X), *Value(V, Y)

Check (F U, V', E).

-Check(W,E), if (integer WI) Value(W,E).

*Check(W,E), Explanation(S, W),

*CurrentNode(-), if (errorcode W)

Display{S}, CurrentNode(E).

The first rule tentatively attaches F U, V1 to the application node via Check. If the value of F U, V' is

an integer, then the second rule converts the Check connection to a Value connection to reflect the fact

that the value is bona fide. On the other hand, if the value of F1 U, V, is an error code, then evalua-

tion is stopped (since no Value is attached to the node), the offending node is recorded (in

Lo CurrentNode), and an explanation of the error code is displayed.

In the pseudonaturaJ notation these rules are:

If an expression is an application, a string is the operator of the expression, node 1 is the

left argument of the expression, node 2 is the right argument of the expression, a function is the

meaning of the string, given numberl1 is the value of node 1, and given number_2 is the value of

node 2 then the fun-tion of number I and number 2 is the value to be checked for the expression.

If given an alleged value is the value to be checked for an exp. ession, and the alleged value is an

integer then the alleged value is the value of the expression.

-22-

7. - s

If given an alleged value is the value to be chpcked for an expression. the alleged value is an

error code, a string is the explanation of the error code, and anN node is the current node then the

string is displayed. and the expression is the current-node.

Thus. if Ln erro" value is detected. evaluation is suspended. an error message is issued, and the

offending node is recorded.

The alert reader will realize that with a parallel evaluator there is the possibility of several errors

occuring concurrently. With the error checking method presented above, all the diagnostics will be

issued correctly, but CurrentNode will record only the last node to generate an error. A more elaborate

system would place all error nodes in a two place relation ErrorNodes such that

* ErrorNodes (E, C)

means that node E generated error code C. It is then necessary to have a command for removing a

node from ErrorNodes and making it the CurrentNode. The detailed implementation is left as an exer-

cise for the reader.

7.2 Suspension

What is the state when an error message is sent? There may be parallel computations in progress. but

since no Value has been provided for E, the evaluation cannot complete. It is suspended, waiting for a

*value for E.

* There are several possible actions:

1. Supply a value for the offending node and let evaluation continue. E.g.

CurrentNode (E) -- Value (0,E):
0

2. Unparse the offending node to find the problem:

CurrentNode (E) Unparse (E):

Current.Node (E), *Image (SE) Display {S}:

2. We Ahow the rule that would he typed in 11 commrand mode to ,ffect the desire-d error recovery action.

-23-

777* -7-7.

3. Investigate neighboring nodes (e.g.. the divisor):

*CurrentNode (E). Right (Y,E) --- CurrentNode (Y):

- unparse as above

4. Reevaluate the dividend and supply a default value for the divisor. E.g.,

CurrentNode (E). Left (X,E) Eval (X);

CurrentNode (E), Right (Y,E) - Value (1, Y);

5. Abort evaluation by clearing out all Eval, Value and Check tuples:

*Eval (E) --- ;

*Value (V,E) -

*Check (V,E) -

All these functions (and more) could be provided as commands in a programming environment. In the

next section we will investigate a command interpreter that permits debugging actions such as these.

-24

I.I

S. Command Interpreter

vI' In this section we will describe a simple command interpreter in fn rules. This command interpreter

will permit the interactive evaluation and unparsing of (already entered) abstract programs, in addition

to various debugging and error recovery activiies.

We assume the existence of a relation called Command that contains the last string or keystroke (we

don't care which) typed on the keyboard. We will use boldfaced identifiers such as evaluate to

represent commands: these identifiers could be bound to strings, key codes, menus coordinates, etc.

First we consider the evaluate command: its intended effect is to request evaluation of the current

expression, which might be the entire program or some subexpression of it. This command is imple-

mented by the following two rules

*Command (evaluate). CurrentNode(E) - Eval (E), Pendant (E).

*Pendant (E). "Value (V, E) - Display {string- mt IV.

The first rule detects the evaluate command and requests evaluation of the expression. That an evalua-

tion is in progress is recorded in the Pendant relation. When a value arrives at the pendant node, it is

displayed by the second rule.

The auxiliary relation Pendant can be eliminated by using 0 's sequential mechanism:

*Command (evaluate), CurrentNode (E)

S{ Eval (E):

*Value (V.E) Display {string- int 'V} }.

The corimands in the curly braces are evaluated in order. Thus the tuple is asserted to Eval before the

second rule waits for a tuple in Value.

The val command is used to explicitly attach a value to a node. This might be used during error

recovery to allow evaluation to proceed in the face of errors. The command makes use of an additional

relation Argument which holds a string value typed in from the keyboard. We can imagine this worL-

ing as follows: The user types '254' and strikes the val key. This causes the string "254' to be put n

-25-
i" - . . . • % -. • . ° .° • • .' -* ', .

" " ° "

." - , . , '. ° . ,. , .. •--. : , - : v '- , ,. .".. .. .-:.- .

the Argument relation and the key val to be put in the Command relation, The rule for processing the

val command is:

*Command(val), 'Argument(U). CurrentNode(E)

Value (int-string VE).

The show command requests the current expression to be unparsed and displayed. It is implemented

by:

*Command (show), CurrentNode (E)

{ Unparse (E);

*Image (S,E) - Display {S}}.

It is also useful to have commands for moving within the abstract program structure. The in command

"zooms in" by focusing on the left-argument of the current expression:

*Command (in), *CurrentNode (E), Left (XE)

CurrentNode (X).

Thus the in command shifts the focus from the current node to the left-argument of the current node.

The next command shifts the focus from the left argument of an application to its right argument:

*Command (next), *CurrentNode (X), Left (XE), Right (Y,E)

CurrentNode (Y).

In the pseudonatural notation this is expressed:

If given next is the command, node I is the current node. node 1 is the leftargument of an

appl node, and node 2 is the right argument of the appl node then node 2 is the current node.

* Analogous commands are prev. which shifts from the right argument to the left argument, and out

which "zooms out" from either the left of right argument to the entire application.

* tFor debugging it is useful to be able to abort a suspended evaluation. This is accomplished by clear-

ing out the Eval, Check and Value relations:

[. •

Command (abort). *Eval (E)

else Command (abort). *Check '.E)

else Command (abort). *Value (,.E)

else *Command (abort) Display {"aborted."}

Notice (by the absence of an ") that the first three rules leave abort in command. hence they continue

firing as long as there are tuples in Eval. Check or Value. When there are no more such tuples. the last

rule cancels the abort command.

It could be argued that these rules would be more readable if the reassertion of abort were made

explicit. e.g.,

*Command (abort). *Eval (E) -> Command (abort)

else *Command (abort). *Check (V,E) =t Command (abort)

else *Command (abort), *Value (V.E) = Command (abort)

else *Command (abort) -- Display {"aborted."}.

This is an unresolved stylistic issue.

To illustrate the operation of the command interpreter, we present an example session. showing the

keys typed and the responses of the system. Assume the program '((3-0) -1)' is alread) created and

the current node is the root of the tree. The transcript follows:

evaluate

zero divide error

show

(30)

in

evaluate

next

show

0

I val

-27-

Notice ho, the val command triggers completion of evaluation of the program.

-28-
i~~~~~~~~~~~~~~~~.......-.... ... -•. •'.-..'........-... .:...,....-..,..:,,

g. Syntax Directed E(Iting

9.1 Incomplete Programis

In this s.ection we de'.elop a syntax directed editor for this simple language Since for editing we need

* to be able to represent incomplete programs we will add a new node type. *Undef'. representing a part

* of the program that either has not yet been entered or has been deleted:

expr = Con -App/ - Undef

Next we must modif% Eval and Unparse to deal with Undef nodes:

'E~al(E). Undef(E). *CurrentNode (-) Display{"Incomplete" }, CurrentNode(E).

*LUnparse(E), Undef(E) --,Image ("< expr> ". E).

In other words, evaluating an Incomplete program will lead to a diagnostic message and a suspended

*evaluation. Unparsing an incomplete program will show '<expr> in place of the missing subexpres-

sio n

9.2 Edltor Commands

What commands do we want' We will want in to "zoom in" on a subexpression:

* We will want out to "zoom out" from a subexpression:

We will want nmct to shift to the next (to the right) subexpression:

>-Al

We will want prev to shift to the previoris (to the left) subexpre-ssion:

-29-

.p.

It will be convenient to have root to shift to the root of the program tree:

* " Furthermore. we will want all of these movement commands to show us the new current expression by

un parsing it.

We will also need a begin command to initialize the editing session with an empty tree:

We will want to be able to delete a node:

- /0

And we will want to be able to insert a literal value, by 'n #'

Finally we will need the operator commands, . -, x, .for creating application nodes:

AhA

*These are all simple to implement.

The predicate form for the in command rule is-

*Command(in), *CurrentNode(E). Left(X,E)

CurrentNode(X), Command(show).

This is the same as the version discussed n the previous section. except that we have automatically

-30-

issued a shoyw command.

In the pseudonatural notation the in rule is

If given "in' is the command, given an expression is the current node. and a node is the

left _argument of the expression

then the node is the current node, and "show" is the command.

The out command is analogous, except that there are two rules to handle the two possible paths back to

the parent:

'Command(out), *CurrentNode(X), Left(XE)

-~Current.Node(E). Gominand(show).

*Command(out), *CurrentNode(Y), Right(YE)

CurrentNode(E), Command(shoyw).

The next and prey co mm ands are similar.

The delete command is implemented by breaking the current node's connections with its descen-

* dants and changing its type to lindef. There are three cases depending on whether the node is a con-

stant, application or already undefined node:

*Command (delete), CurrentNode(E), *Con(E), *Litval(V,E)

SUndef(E), Command(shaw).

*Command(delete), GurrentNode(E),

~Appl(E), *Op(N,E), *Left(X,E), Right(Y,E)

Undef(E), Command(show).

*Cmd (llete) Curren tNode (E), Undef(F)

Display({'already deleted"}.

40 Note that subtrees are not disassembled, hence they could be reused (say by a move command)

There are two rules to implement the # command. The first one is to create a constant node With a

*give n literal value:

' Command('=). *Argumrent(V'). if (integer(V)). Curren t~ode (E). *Undef(E)

=~Con(E). Litv all VE). Command(shoyw).

The other rule handles the case where the current node is a~readN defined: we require a node to be

deleted before it can h)e replaced:

Command('). *Argument(V). CurrentNode(E). -Undef(E)

Display{"defined node").

NeXt we consider that commands for creating application nodes. If the user types then we must

-create an Appl node with two undefined daughters and a for the operator:

*Command("-. "), *CurrentNode(E), *Undef(E), *Avail(X, Y)

* Appl(E), Op("- ",E), Left(X,E), Right(YE),

Undef(X), Undef(Y), GurrentNode(X).

* Here we have assumed that Avail contains an indefinite supply of unused objects; objects are allocated

* by a system procedure in the McArthur interpreter. Also notice that the focus is automatically shifted

* . to the left argument of the new application.

It would be somewhat inconvenient to repeat the above rule for each of the four operators. Also we

- . would need four rules for detecting already defined nodes. Fortunately we can use the applicative

features of Q to, make one rule handle all four operators:

* ~~*Commanld(f), member if, ~'--','-' 'x''

*CurrentNode(E), *Undef(E), *Avail(X, Y)

* ~Appl(E), Op(f,E), Left(X,E), Right(Y,E), Undef(X). Undef(Y). Curren LNode (X).

* Already defined nodes are handled by:

*Command(f), member J, '"+ - "x * ,Current.Node(E), -Undef(E)

- ~>DDisplay{" defined node").

The begin command is implemented by creating a tree containing a single undefined node:

*Command(begin), *CurrentNode(-), ~](E Root(E), t'ndef(E

-32-

The root command is simple since the Root relation holds the root of the tree (set by the begin

command):

* 'Command(root). *CurrentNode(-).Root(E)

* CurrentNode(E). Cornmand(show).

A typical session will illustrate operation of the syntax directed editor. Our goal will be to construct the

program '(3 0-1' and change it to '(31-. -V'. We show commands on the left margin, and responses

ind e nted:

begin

< expr>

30

next

< expr>

out

(3-0)

out

*((3-*0) < <expr>)

in

(0-0)

* next

< expr>

-33-

root

((3-0)-1)

evaluate

zero divide error

show

(3-0)

in

3

next

0

delete

root

abort

aborted.

evaluate

4

This is, of course, a very simple system for a very simple language. But it illustrates the ideas of a pro-

grarnming environment. A version of this system that executes correctly under the McArthur inter-

preter 'McArthur84 is shown in the appendices.

9.3 Permissions

We review the access to the various relations needed by the various tools:

Editor - can read and update program structure relations (Con, Litval, etc.). CurrentNode. Root

and evaluator and unparser relations (Eval, Check, Value, Unparse, Image).

0 Evaluator - can only read program structure relations, can read and update evaluation relations

(Eval, Check and Value); can update CurrentNode and Display: can read Meaning and Explanation

-34-

Unparser - can only read program structure relations: can read and update unparser relations

(Unparse and Image): can read Template.

These rights can be enforced using the fl capability mechanism- see MacLennan83 or MacLennan85

for a description.

10. Conclusions

We believe that this report has shown that major components of a programming environment, albeit in

a rudimentary form, can be conveniently programmed in Q1 . If this experience is typical. if a reason-

able programming environment can be prototyped in a few hundred rules, then we believe that our

ability to prototype software will have been much enhanced. Succeeding reports in this series will

further investigate this hypothesis by expanding the capabilities of the prototype programming environ-

ment.

11. References

'MacLennan83 MacLennan, B. J., A View of Object-Oriented Programming, Naval Postgraduate

School Computer Science Department Technical Report NPS52-83-001, February 1983.

MacLennan84 MacLennan, B. J., The Four Forms of fl: Alternate Syntactic Forms for an Object-

Oriented Language, Naval Postgraduate School Computer Science Department Technical Report

NPS52-84-026, December 1984.

MacLennan854 MacLennan, B. J., A Simple Software Environment Based on Objects and Relations.

Proc. of ACM SIGPLAN 85 Conf. on Language Issues in Prog. Environments, June 25-28. 1985. and

Naval Postgraduate School Computer Science Department Technical Report NPS52-85-005, April

1985.

McArthur84 McArthur, Heinz M., Design and Implementation of an Object- Oriented, Production- Rule

Interpreter, MS Thesis, Naval Postgraduate School Computer Science Department December 1984.

U Ufford85' Ufford, Robert P.. A Translation of an Extensible "Natural" Notation Language into an Object

Oriented Language (Omega) (tentative title). MS Thesis. Naval Postgraduate School Computer Sci-

ence Department. June 1985.

-35-

APPENDIX A: Prototype ProgrammiL g Environment

Predicate Notation for Q2

The following is a loadable input file for the prototype programming environment described in this

* report. It is accepted by the McArthur interpreter 'McArthurS4 .which differs in a few details from

the nl described in this report (see Mlacb~ennari84 (A transcript of a test execution of this environ-

ment is shown in Appendix C.

1P1-

Rules and associated definitions for

* an arithmetic expression language.

* Relations

* Program Structure Relations

define froot, "Appl". newrelehn s

define {root, 'Up, newrelife

define {root, "Left", newrel{}}:

define root "Rightbe . newrelo{

define {root, 'Cn" newrel{}};

define root, "Litval" newrelo;

Evaluation Relations

define {root. "Eval'r newrel}:

," define (root, "Check". newrel{}}:

define (root, "Value", newrel{}};

define {root, '"eaning", newrel{} ;

*define {root, "Explanation", newrel{ :

Unparser Relations

-36-

o de*e ro . newr*)*

.. dfin {rot, Chec". ewre{}}

- " efin {rot, Wa~u", ewre{}}

define {root. "Unparse". newrel{}}:

define {root. "Image". newrel{}}:

define {root. 'Template". newrel{}}:

Command Interpreter Relations

-i define {root, 'Command", newrel{}};

define {root, "Argument", newrel{}};

define {root, 'Root", newrel{}};

define {root, "Undef", newrelO}};

define root, "CurrentNode", newrel{}};

define {root, 'EvalPending", newrel{fl;

define {root. "ShowPending", newrel{}};

define {root, '"CreateAppl", newrel{}}:

define {root, "CreateRoot". newrel{}};

define {root, "Script". newrel{}}:

define {root, 'VendScript". newrel{}}.

Functions

fn Id x x;

fn Sum x.y : x - y:

fn Dif x,y x- y:

fn Product x,y x y:

fn Quotient x.y

if y = 0 -> "error", I'

else x, y;

Sfn IsErrorcode w

-37-

if IsList w w= Nil-> Nil

else first w "error":

fn upSurn x.y:'("- x '- "- y- ?)":

fn upDif x.y:'(''- x - "- '- y- ')

fn upProd xvy I"("- x - "x " - v ")I:

fn upQuot x.y:""- x- nj"- y

I Built-in Tables

Meaning (Sum, "-");

Meaning (Dif, ,,".

Meaning (Product, x");

Meaning (Quotient, "/")

Meaning (Id, "lit");

Template (upSum, "-"

Template (upDif. "")"

Template (upProd, "'");

Template (upQuot, "";

Template (int str, "lit");

Explanation ("incomplete program", "error", 0');

Explanation ("division by zero", "error", 1).

I the Rules

define{root. "Pl1Rules",

Evaluator Rules

! Constant nodes

-38-

T 1 C .K -

* if 'Eval(e). Con(e). Litval(v, e). Meaning(f. "fit")

Value(f v.e)

* Appi nodes

if *'Eva1(e), Appl(e). Leftjx.e). Rightoy~e)

>EvaI(x). Eval(y):

if *Value(u,x). *Value(v,y). Appl(e). Op(n.e). Left(x e). Right(ye). Meariing(f. n)

->Check(fuv,, e):

*Error Checking

if *Check(w. e). lIsErrorcode w.

* -> Value(w, e):

if *Check(w, e), IsErrorcode w Explanation(s, w), *Curren tNode (q)

->displayn~s}. Current.Node(e);

*Unparser

Conmstant Nodes

if *Unparse(e). Con(e), Litval(v~e), Template(f, 'lit")

-> mage(f v, e)

*Identifier nodes

*Appi nodes

*if *Uprs~) App](e), Left(x.e), Right(y.e)

->Unparse(x), Unparse(y);

if *Irnage(u.x). *Image(v,y). Appl(e), Op(n,e). ILeft(x.e). Right(y,e). Template(f. n)

-> rrage(f'u,ve)

1. -39-

Command Interpreter Rutes

evaiuate Command

if *Com~mand('e~aiuat,-"). Current Node(E)

- LaI(E). Evallendtng(EF).

if Walue(V.E). EvalPending(E)

->displayri {V):

*return Command

if *Commnand("%, al'). *Argument(V). Current.Node(E)

->Value) VE);

- show Command

if *Command ('Show"). CurrentNode(E)

- -> Unparse(E). ShowPending(E).

if *Iae() *ShowPending(E)

* -> displayn{S};

abort Command

if Command("abort"), *Eval(E) -

if Co mm and ("abort"), *Value(V,E) ->

if Command ("abort"), *Check(N',E) -

if *Comm~and ("abort"). -val(E), 'Value (V, E) ->displayn{("aborted")-

Handle incomplete program

if *Ea() Undef(E). *GurrentNode(Q)

-40-

1i~p~a m "1~rplete") Curre riNode E)

if 'tnpars;e(L) U ndef(E)

m lrage' e" expr E).

Syntax Directed Editing

'in Command

if (?onimand('in'). *Current Node (E), Left(X.E)

-CurreritNode(X). Command("show"):

if 'Command ("outij. 'CurrentNode(X). Left(X.E)

->CurrentNode(E). Command("Show").

if *Command ("outij, *CurrentNode(Y). Right(YE)

->Current~ode EY, Comm andi "show");

* ' next Command

if *Comm and("next"), *Curren tNode(X), Left(X.E), Right(YE)

CurrentNode(Y), Cornmand("show"):

prey Command

if *Command ()pre v" *CurrentNode(Y), Right(Y.E). Left(X.E)

-~CurrentNode(X), Comrnand("show");

delete command

if *Command ("delete"). CurrentNode(E). *Con(E), *Litvaj(N'E)

* -> Undef(E), Command("show");

if *Comm and("delete") , CurrentNode(E). *Appl(E). *Op(N .E). *Left(X.E). Right(Y.E)

tUndef(E). Command(" show");

-4 1-

if *Comm and("delete'), CurrentNode) E). Undef(E)

display-n("aireadNy deleted").

~Command

if 'Comnmand("="). *Argument(V). IsInt N' Current.Node) F). iiridef(E)

-> Con(E). Litval(V.E). Comm and("show"):

if 'Comm and("&"). *Argument(V). CurrentNode(E). -Undef(E)

-> displayn ("defined node");

* .x ,Commands

if *Command(op), member op, "-. ",".A, t/fV, *CurrentNode(E), *Undef(E)

->CreateApp!(op. E, newobj{}, newobjo);

if *Create Appl(op.E. X.Y)

-> Appl(E), Op(op.E). Left(XE). Right(YE), Undef(X), Undef(Y), CurrentNode(X);

if *Command(op), member o."-".-,"",/~*Current.Node(E), -Undef(E)

displayn ("defined node");

begin Command

if *Comm and("begin"). *Current~ode(Q)

*>CreateRoot(newobj{});

if *CreateRoot(E)

-> Root(E). Undef(F4, CurreniNode(E):

* root Command

if *C mmand("!rootl) *CurrentNode(Q). Root(E)

->CurrentNode(E), Comm and('Show~):

-42-

Test Driver

if *SrptNl -> displayni'Script completed"I

else if *Script(L). (first L ="'first L ="val")

displayn {".." first -rest L. - first L }

Command(first L),Argument(first rest L).PendScript(rest restL

else if *Script(L)

-> displayn {".."-first L }

Command(firstL), PendScript(rest L)}

if *PendScript(L), -Command(Q) -> Script(L)

define {root. "testscript".

'%egin ", If- to, "'1 ". 11 , "next", "k"1, 0, "o'ut", t
loutl,

'in" "next". "=I?, 1, "root". "evaluate", "Ishow", 'i"

"!next". "delete", "v,1, "root". "abort", " evaluate"]}

* activate the rules

act{ PlhRules }

Current.Node(-Nil).

display-nf"PI-l System loaded").

-43-

APPENDIX B: Prototype Programming Environment

Pseudonatural Notation for Q2

This appendix displays the prototype programming environment of Appendix A in the pseudonatural

notation designed by Robert Ufford Ufford85 Ufford also performed this translation of the Appendix

A program into the pseudonatural notation.

Rules and associated definitions for

an arithmetic expression language.

Relations

Program structure relations

"Application" (procedure) is defined as a relation.

'pprator" (procedure) is defined as a relation.

"Left-argument" (procedure) is defined as a relation.

'Right argument" (procedure) is defined as a relation.

'Constant" (procedure) is defined as a relation.

"Literal value" (procedure) is defined as a relation.

Evaluation relations

'Evaluated" (procedure) is defined as a relation.

S" 'Checked" (procedure) is defined as a relation,

"Value" (procedure) is defined as a relation.

0 "Meaning" (procedure) is defined as a relation.

"Explanation" (procedure) is defined as a relation.

-44-

Unparser relations

"Unparsed" (procedure) is defined as a relation.

" . 'Image" (procedure) is defined as a relation.

'Template" (procedure) is defined as a relation.

* !Command interpreter relations

"Command" (procedure) is defined as a relation.

"Argument" (procedure) is defined as a relation.

"Rootnode" (procedure) is defined as a relation.

'Undefined" (procedure) is defined as a relation.
"urenine" (procedure) is defined as a relation.

"'urrent_node" (procedure) is defined as a relation.

. 'Pendingevaluation" (procedure) is defined as a relation.

" a tShown" (procedure) is defined as a relation.

- '"New _application" (procedure) is defined as a relation.

New root" (procedure) is defined as a relation.

"Script" (procedure) is defined as a relation.

S"Pending script" (procedure) is defined as a relation.

- _Functions

function identity x': x.

function sum x,y x - y.

* function difference x,yl: x - y.

function product 'x,y;: x * y.

function quotient x,yi:

* if y = 0 then the list of the 'errorcode" and I

else x / y.

function error code 'W :

-45-

"- .T _ 7 . - _

if W (predicate) is not a list W .Nil then Nil

else the first (function) of \V "error code.

function sum template x. - " y - ")

function difference template x.. .(" - " - ")

function product template x.y :"("- x - y-

""['" function quotient template xy "("- x " - .

Built-in tables

Sum is the meaning of

Difference is the meaning of

Product is the meaning of '".

Quotient is the meaning of "I"

Identity is the meaning of "lit".

Sum template is a template for

Difference template is a template for .

Product template is a template for 'x".

Quotient template is a template for ""

String notation is a template for 'lit".

S. 'lncomplete program" is an explanation for the list of error code and 0.

"Division by zero" is an explanation for the list of error code and .

* Noise words

'Must" (procedure) is defined as a noise verb.

'Be" (procedure) is defined as a noise verb.

"Being" (procedure) is defined as a noise verb.

'stablished" (procedure) is defined as a noise verb,

'ill" (procedure) is defined as a noise verb.

-46-

- - - - - --.- .- - .--•-- -- .-- - . •. ,~ . . " ,- -7 .. .-- -.- " ; . -.. -. . -. , . ., . - . ,. .. :

S"Another" (procedure) is defined as a noiseprep.

* The rules

"Pl1 rules" (procedure) are defined as

Rules

Evaluator rules

' Constant nodes

If given an expression is being evaluated,

the expression is a constant,

a number is the literal value of the expression, and

a lit function is the meaning of 'lit"

then the lit function (function) of the number is the value of the expression;

Application nodes

If given an expression is being evaluated,

the expression is an application,

nodel is the left argument of the expression, and

node2 is the right argument of the expression

-then nodel must be evaluated, and

node2 must be evaluated:

* If given valuel is the value of nodel,

given value2 is the value of node2.

the expression is an application,

• a string is the operator of the expression.

.nodeI is the left argument of the expression.

node2 is the right argument of the expression, and

-47-

• : ' " . * * " . - .-

"* ."an operator function is the meaning of the string

then the operatorfunction (function) of valuel and %alue2 must be checked

for the expression:

Error checking

If given an alleged value is being checked for an expression, and

• .the alleged -value (predicate) is not an error code

then the alleged value is the value of the expression;

If given an alleged value is being checked for an expression.

the alleged value (predicate) is the error code,

a string is an explanation for the alleged value , and

given anynode is the currentnode

then the string (procedure) is displayed with return and

the expression is the currentnode;

* Unparser

* Constant Nodes

If given an expression is being unparsed.

the expression is a constant,

valuel is the literal value of the expression, and

a litfunction is a template for "lit"

then the lit function (function) of valuel is the image of the expression:

Identifier nodes

" Application nodes

If given an expression is being unparsed.

the expression is an application.

-48-

- - - - - -- -,-- -. .

nodel is the left argument of the expression. and

4. node? is the right argument of the expression

then nodel must be unparsed and

node2 must L-e unparsed:

If given image1 is the image of node1.

given image2 is the image of node2.

the expression is an application,

a string is the operator of the expression,

nodel is the left argument of the expression,

node2 is the right argument of the expression, and

an operator function is a template for the string

then the operator function (function) of imagel and image2

is the image of the expression;

Command interpreter rules

Evaluate command

If given "evaluate" is the command, and

an expression is the current node

then the expression must be evaluated, and

the expression is pending evaluation:

If given valuel is the value of an expression, and

the expression is pending evaluation

then value] (procedure) is displayed with return:

Return command

If given "val"is the command,

given value I is the argument, and

-49-

* - .,.

an expression is the current node

then value I is the value of the expression.

Show command

If given "show' is the command, and

an expression is the current node

then the expression must be unparsed. and

the expression will be shown:

* If given a string is the image of an expression. and

given the expression must be shown

then the string (procedure) is displayed with return:

Abort command

If "abort" is the command, and

given an express ion is being evaluated

* then 'do nothing'

If "abort" is the command, and

given a value is the value of an expression

then 'do nothing.

If "abort" is the command. and

given a value is being checked for an expression

then 'do nothing'.

If given "abort" is the command.

an expression is not being evaluated, and

a value Is not the value of the expression

then "aborted" (procedure) is displayed with -return:

-50-

Handle incomplete program

If given an expression is being evaluated.

the expression is undefined, and

given anyv node is the current node

then 'Incomplete" (procedure) is displayedwith return, and

the expression is the current node;

If given an expression is being unparsed, and

the expression is undefined

then "< expr> "is the image of the expression;

Syntax Directed Editing

in Command

If given 'in" is the command,

given an expression is the current node, and

nodel is the left argument of the expression

then nodel is the current node. and

'show" is the command;

If given "out" is the command,

given nodel is the currentnode, and

nodel is the left argument of an expression

* then the expression is the current node, and

'how"is the command;

If given "out" is the command,

given node2 is the current node. and

node2 is the right argument of an expression

then the expression is the current node, and

,. -51-

:, - " " " • " . . "; " -.-'. .' " ... "'- "." - - " -" - "

'show" is the command:

I next Command

If given "next" is the command.

given nodel is the current node.

nodel is the left argument of an expression. and

node2 is the right argument of the expression

then node2 is the current node, and

"show" is the command:

prey Command

If given "prev" is the command,

given node2 is the current node,

node2 is the right argument of an expression, and

nodel is the leftargument of the expression

then nodel is the currentnode, and

"show" is the command;

delete command

If given "delete" is the command,

an expression is the currentnode,

S. given the expression is a constant, and

given a value is the literal value of the expression

then the expression is undefined, and

"show" is the command;

0 If given "delete" is the command,

an expression is the current node,

given the expression is an application,

-52-

-•- - - . -- . - A

o

given a string is the operator of the expression.

given nodel is the left argument of the expression. and

node2 is the right argument of the expression

then the expression is undefined, and

'"show" is the command:

. If give 'delete" is the command.,

an expression is the current node, and

the expression is undefined

then "already deleted" (procedure) is displayed with return;

. # Command

If given '#", is the command,

given value] is the argument,

valuel (predicate) is an integer,

an expression is the currentnode, and

given the expression is undefined

then the expression is a constant,

valuel is the literal value of the expression, and

"show" is the command:

If given '#" is the command,

given valuel is the argument,

an expression is the current node. and

the expression is not undefined

then "defined node" (procedure) is displayed with return:

-, x, / Commands

. If given a strig is the command.

-53-

the string is a member of the list of"-", "-" '. and

given an expression is the current node. and

given the expression is undefined

then the expression is established as a new application with a string

and an object and another object:

If given .n expression is a new application with a string and nodel

and node2

then the expression is an application.

the string is the operator of the expression,

nodel is the left argument of the expression,

node2 is the right argument of the expression,

nodel is undefined.

node2 is undefined, and

nodel is the current node;

If given a string is the command.

the string is a member of the list of " N. ", 't., "x. and ,

an e pression is the currentnode, and

the expression is not undefined

then "defined node" (procedure) is displayed with return;

begin Command

If given 'begin" is the command, and

given any node is the current node

then an object is established as a new root;

I

If given an expression is a new root

then the expression is a rootnode,

the expression is undefined, and
-

. .• . . , ... o ,o . - .. ". "

the expression is the current node:

root Command

If given "root" is the command.

given any node is the current node, and

an expression is the root node

then the expression is the current node, and

" show" is the command:

Test driver!

If given Nil is the script

then "Script completed" (procedure) is displayed with return

* Else if given a list is the script, and

* (the first (function) of the list

the first (function) of the list - v&l")

then

* begin

"(procedure) is displayed;

the first (function) of the rest (function) of the list

(procedure) is displayed;

the first (function) of the list (procedure) is

displayed with -oturn;

the first (function) of the list is the command.

the first (function) of the rest (function) of the list is the argument. and

the rest (function) of the rest (function) of the list is the pending script

end _block,

Else if given a list is the script

then

begin

"(procedure) is displayed:

the first (function) of the list (procedure) is

displayed with return:

the first (function) of the list is the command, and

the rest (function) of the list is the pendingscript

endblock;

If given a list is the pending script, and

something is not the command

then the list is the script;

end rules.

activate the rules

The PH rules (procedure) are activated.

Nil is the current node.

- . "PI-1 System loaded" (procedure) is displayed with return.

S.

o

°

0

• "..-56-

.0

APPENDIX C: Transcript of 0 Session

The following is a transcript of an £2 session illustrating the operation of the prototype programming

environment shown in Appendix A. The assertion 'Script (testscript) " causes the commands in

testscript to be executed in order. Each command is printed on a separate line. followed by whatever

output is generated by the programming environment. This transcript was produced by the McArthur

interpreter McArthur84

OMEGA-I 11 30/84

Use Cntl-D or exit{} to quit.

O For help, enter help{'"}.

To report a bug, enter Bugs{}.

PI-I System loaded

> Script (testscript).

begin. - , i, 3. next, # 0, out. out. in, next, #, 1. root, evaluate, show, in, in, next,

delete. #, 1, root. abort, evaluate

b... egin

. ... 3 :;

next

< expr>

0 7

0

ou... o

* (3/0)

... out

-57-

((0) < expr>)

in

(3 0)

..next

< expr>

.root

((/'0) +t 1)

.. evaluate

division by zero

.show

(30)

..in

3

* ... next

0

.. delete

< expr>

.root

*((3 '1) +1)

.abort

aborted

.evaluate

4

Script completed

-58-

> exitfj.

Goodbye.

-59-

.I. - A . A4•

I . -

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria. VA 22314 2

Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey. CA 93943 2

.. Office of Research Administration
Code 012A
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943 40

O- Associate Professor Bruce J. MacLennan
Code 52ML
Department of Computer Science
Naval Postgraduate School

Monterey, CA 93943 12

Dr. Robert Grafton
Code 433
Office of Naval Research
800 N. Quincy
Arlington, VA 22217-5000

Dr. David Mizell
Office of Naval Research
1030 East Green Street
Pasadena. CA 91106

Professor Jack M. Wozencraft. 62Wz
Department of Electrical and Comp. Engr.
Naval Postgraduate School
Monterey. CA 93943

Professor Rudolf Bayer
Instituit fur Informatik
Technische Universitat
Postfach 202420
D-8000 Munchen 2
West German)

Dr Robert NI. Balzer
USC Information Sciences Inst.
4676 Admiralty Way
Suite 10001
Marina del Rey, CA 90291

. .*

* r rs--r -.-, -- W . - -

Mr. Ronald E. Joy
* HoneyWell. Inc.

Computer Sciences Center

* 10701 Lyndale Avenue South
Bloomington. Ml 55402

-Mr Ron Laborde
INMOS
-Vhitefriars
Lewins Mead
Bristol
Great Britain

Mr. Lynwood Sutton
Code 424. Building 600
Naval Ocean Systems Center
San Diego, CA 92152

Mr. Jeffrey Dean
Advanced Information and Decision Systems

* 201 San Antonio Circle, Suite 286
Mountain View, CA 94040

Mr. Jack Fried
Mail Station D01,'31T
Grumman Aerospace Corporation

Bethpage, NY 11714

Mr Dennis Hall
New York Videotext
104 Fifth Avenue, Second Floor
New York, NY 10011

Professor S. Ceri
Laboratorio di Calcolatori
Departimento di Elettronica
Politecnico di Milano
20133 - Milano
Italy

Mr. A. Dan Samples
, i-. Computer Science Division - EECS

University of California at Berkeley
Berkeley, CA 94720

0

-0l

- -. . . *. * *. . . .," .. *.**. * *,-.*• • . .

FIlMED

7-85

DTIC

